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Abstract:Convolutional Neural Networks (CNNs) work surprisingly well and has helped drastically enhance the state-of-the-art
techniques in the domain of image classification. The unprecedented success motivated the application of CNNs to the domain of
auditory data. Recent publications suggest Hidden Markov Models (HMMs) and Deep Neural Networks (DNNs) for audio classifi-
cation. This paper aims to achieve audio classification by representing audio as spectrogram images and then use a CNN-based
architecture for classification. The paper presents an innovative strategy for a CNN-based neural architecture that learns a sparse
representation imitating the receptive neurons in primary auditory cortex in mammals. The feasibility of the proposed CNN-based
neural architecture is assessed for audio classification task on standard benchmark datasets such as Google Speech Commands
datasets (GSCv1 and GSCv2) and UrbanSound8K dataset (US8K). The proposed CNN architecture referred to as Braided Con-
volutional Neural Network (BCNN) achieves 97.15%, 95% and 91.9% average recognition accuracy on GSCv1, GSCv2 and US8K
datasets respectively outperforming other deep learning architectures.

1 Introduction

Content-based classification refers to inspection of a data stream for
useful information. In context to audio signals, the term is specifi-
cally used for recognizing sounds or voice commands in an audio
stream. This research area is focused on two major applications
namely speech/voice recognition and environmental sound recogni-
tion. The difference in the two domains lies in the fact that human
speech (for example music and verbal speech) involves classifica-
tion of strongly structured and organized audio samples whereas
environmental sound classification involves semi-structured audio
samples.

In perspective of speech recognition, Google offers smart assis-
tants and Keyword spotting (KWS) systems on mobile devices
allowing its users to search by voice [1]. There are also speech recog-
nition applications for the disabled community [2]. On the other
hand applications for environmental sound classification range from
surveillance [3], acoustic event analysis [4], health, hygiene and
smart homes [5].

Researchers have used Hidden Markov Model (HMM) [6], matrix
factorization [7], Hough Transform [8] and Radon Transform [9]
to the domain of audio classification. Such methods learn simple
representations of data and they require task-specific modifications.

Developments in parallel processing such as advent of GPUs lead
to burgeoning interest in the field of deep learning which aims at
progressively extracting more complex, higher level representations
from raw input. Among deep neural architectures, Convolutional
Neural Networks (CNNs) have been one of the most successful
architectures, especially in computer vision [10]. The primary cause
which lead to proliferation of CNNs across various domains is its
agility in reducing variations and extracting spatial correlations for
large scale image recognition [11–14].

Motivated by magnificent achievements of CNNs, this paper
investigates whether CNNs can be used for audio classification.
This work explores the capability of CNNs to learn spectral correla-
tions and to reduce spectral variations ultimately achieving accurate
content-based audio classification.

As the deep-learning methods are pivoted to learn feature hierar-
chies, the potency of deep learning can be exploited by increasing
its size i.e. depth (number of stacked layers) and width (number
of layers at the same level) [15]. In theory, increasing the number

of layers should not increase generalization error as the redundant
layers should learn an identity mapping [14]. Thus, empirically
deep networks emulate shallower counterparts to learn an optimal
non-linear mapping. Such an approach results in high classifica-
tion accuracy. However, the ability of a deep neural architecture
to learn discriminative features by directly mapping input to output
subsists on quantity and quality of data [16]. Inadequate amount of
data would make searching optimal kernels for a deep architecture
a cumbersome task. Training deep neural networks by iterating over
limited data often leads to poor generalization. Recent publications
have addressed the problem of degradation using regularization [17],
weight normalization [18] and residual connections [14].

Integrating sparsity in the learning algorithm can fundamentally
solve the problem of learning an optimal representation [19]. The
primary auditory cortex in mammals have a sparse architecture
[20]. The architecture is localized, oriented, sparsely associated,
and systematically organized. Imitating natural sparse architecture
of auditory cortex in mammals, it can be postulated that learning a
sparse representation can efficiently process audio signals. This work
is based on arriving at a optimal sparse architecture modeled using
dense convolutional components.

Prior works have bifurcated the task of audio classification into
two different domains of speech and environment acoustic events.
This work focuses on learning an optimal cross-domain sparse
network that can successfully be applied for audio classification
in general. The proposed Braided Convolutional Neural Network
(BCNN) outperforms other deep neural architectures without any
modification in the architecture with respect to domain of audio
signals.

The rest of the paper is organized as follows. Section 2 dis-
cusses the existing approaches for audio classification. In Section 3,
an overview of the proposed methodology and CNN architectures
is presented. Section 3.5 describes in detail the proposed BCNN
architecture. The experimental setup, the results and comparative
performance measures are described in Section 4. Section 5 includes
a discussion of the observed results. Section 6 concludes the paper
providing a brief summary of the work.
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Fig. 1: Schematic diagram representing CNN-based audio classifi-
cation

2 Related Work

Identification of speech commands in short audio segments has
a wide range of applications especially with wide acceptance of
speech-driven user interfaces. Apart from smart devices, the appli-
cations span to developing an OpenKWS system, content based
search in conversations, sung-word recognition [21] and audio
database indexing [22]. With development of IoT, researchers are
using wireless sensors to analyze environmental sounds particularly
for bird species recognition [23], obtain obstacle information for
visually-impaired people [24], audio surveillance [25], whale sound
categorisation [26] and automatic snore detection [27].

In past years, numerous researchers have applied different meth-
ods to achieve robust audio classification. To overcome primary
obstacle of environmental and demographic variations researchers
have used techniques such as Hidden Markov Model (HMM) [6],
matrix factorization [7], i-vector [28, 29], Hough Transform [8],
Radon Transform [9], Restricted Botlzmann Machines (RBM) [29],
Deep Neural Networks (DNNs) [30, 31] and CNNs [32, 33] to the
domain of audio classification.

Researchers have also focused on representing audio in the form
of spectrograms for its classification. Costa et al. [34] extracted local
binary patterns from time-frequency spectrograms. Nanni et al. [35]
extracted visual features from local windows of a spectrogram gen-
erated by Mel-scale zoning with an ensemble of SVM classifiers.
In their subsequent work [36], they combined visual and acoustic
features which boosted the classification accuracy. Researchers have
also used state-based models such as Dynamic Time Warping [37]
and Hidden Markov Models [30]. However, rather than employing
a time-variant approach, the audio was represented as a sequence of
spectrogram images.

GMM-HMMs [38] have been used extensively for automatic
speech recognition. In theory, GMM-HMMs can model probabilis-
tic distribution to complete gamut of precision [30]. Consequently,
there had been exclusive focus on constraining GMMs, in order to
enhance their speed and accuracy. With advent of high-performance
computing systems, DNNs have proven to perform exceptionally
better than GMMs in robust modeling of audio recognition systems,
especially in terms of implementation, evaluation time, latency and
memory footprint [31]. DNNs provide more flexibility in feature rep-
resentation and they tend to perform more efficiently than GMMs
especially with large datasets and large vocabulary [32]. In addition,
DNN model size can be appropriately constrained so that it can be
deployed directly on end-devices.

However, DNNs have significant drawbacks. First of all, DNNs
disregard the spatial topology of the input [39]. Audio consists of
strong correlations in structure with respect to frequency domain.
The spatial correlations are not utilized by DNNs as they inherently
don’t model topology of the input. Moreover, DNNs are not invari-
ant to translational variances in audio signals. Although, adequate
number of parameters in DNN architecture and sufficient training
time would allow the network to achieve translational invariance,
the network would be dense. Hence, it would dramatically increase
computation and complexity [39].

Therefore, recent works [40, 41] have revolved around using
CNNs with spectrograms for audio classification. CNNs have shown
improved efficiency as they account for the spatial differences in
the input by using a sparse locally connected structure [42]. They
can model time and frequency components between adjacent audio
samples. Thus, CNNs have outperformed DNNs in modeling audio
classification systems. Depth is of prime importance for deep CNNs

Fig. 2: Illustration of mel-spectrogram from the audio files in
GSCv1 dataset for various speech commands exhibiting intra-class
variations and inter-subject similarity.

to extract relevant high-dimensional features. However, the results
presented by Sainath and Parada [1] in context to speech recogni-
tion demonstrate that increasing depth unnecessarily may degrade
the performance of learning algorithm. He et al. [14] tackles the
problem of learning very deep neural architectures by introducing
shortcut connections. It can be inferred that it is important to pro-
gressively extract complex but also coherent feature representations.
Deep architectures suffer from vanishing gradients as it reaches
the end of neural architecture for classification [43]. Inspired by
tremendous success of CNNs [11, 13], this paper investigates the
ability of deep CNNs to model spectral correlations and to reduce
spectral variations for audio classification. The proposed model pro-
poses braided-connectivity of convolutional layers to push features
extracted from the various layers for efficient classification.

3 Proposed Methodology

Figure 1 represents the schematic of the proposed methodology. The
proposed methodology is represented as three major components:
preprocessing, mel-scaled spectrogram generation and classification.

3.1 Preprocessing

The input audio signal is re-sampled to 8 kHz at the pre-processing
step. Re-sampling is applied to reduce dimensionality of the input
signal. In addition, every sample is padded with zeros to guarantee
uniformity in input data. Zero padding preserves spatial size without
influencing learning algorithm in a biased way.

3.2 Spectrogram Generation

The pre-processed raw audio waveform is transformed to a 2-
dimensional image known as a spectrogram. A spectrogram can be
understood as a 2-dimensional feature map representing frequencies
with respect to time [9]. The human ear perceives frequencies on a
logarithmic scale. Hence, the frequency scale is changed to mel-scale
thereby converting a regular spectrogram to mel-spectrogram.

The obtained spectrogram is resized to (96 × 96) before feed-
ing for classification as reducing the dimension of the input before
spatial aggregation leads to faster training without much loss of
spatial representation [44]. Figure 2 depicts an illustration of mel-
spectrogram images generated from the audio samples for different
classes such as down, go, left, no, off and on.
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3.3 Standard CNN architecture

The initial layer of a CNN represents the input image, IεIRs×s×c

where s, c are image size and number of channels respectively. A
kernel KεIRm×m×n is convolved with initial layer I to generate
k feature maps FεIR(s−m+1) × (s−m+1) × k. A kernel (or filter)
is shared across patches of previous layer giving rise to a locally
connected structure leading to translational invariance. Each con-
volutional layer is succeeded by a subsampling or pooling layer
which extracts important information while reducing spatial reso-
lution leading to a compact representation of data. To ensure that
the output cannot be reproduced from an affine transformation of
data, a non-linear activation is applied. After several alternating
convolutional and sub-sampling layers, a fully connected layer is
employed to predict the output based on posterior probabilities. The
goal is to learn suitable kernels using back-propagation to reduce the
difference between predicted outputs and ground truth.

3.4 Motivation and Considerations

As explained in Section 3.3, CNNs consist of several alternating con-
volutional and sub-sampling layers, and a fully connected layer to
predict the posterior probabilities. Thus, CNNs form a generalized
linear model (GLM) for the underlying feature maps. However, the
abstraction can be improved using a “micro-network” [45] replacing
GLM. The “micro-network” emulates a general non-linear function
enhancing the abstraction obtained by GLM. The proposed BCNN
utilizes the same idea by using kernels (3 × 3, 5 × 5) at the same
level and repeating the block (referred to as bead in Section 3.5)
sequentially.

DNNs use fully-connected layersat all levels which leads to a
dramatic increase in the computational cost. A locally-connected
structure can be efficiently used to alleviate the issue of compu-
tational cost [13]. CNNs use locally-connected shared kernels for
convolutions, allowing us to learn a sparse representation. This
hypothesis is based on theoretical results proven by Arora et al. [46]
indicating that correlated inputs would concentrate in small local
regions. The results show that an optimal network for accurate clas-
sification can be constructed if an over-specified neural network is
used to learn the probability distribution of the dataset. Moreover,
the use of ReLU non-linear activation function leads to sparse fea-
ture maps naturally [47]. The proposed BCNN approximates optimal
sparse structure by utilizing available dense computations with uni-
formity of architecture, non-linear activation function (ReLU) and a
large number of filters.

Table 1 The table summarizes the convolutional neural architecture of a
bead. The proposed Braided Convolutional Neural Network (BCNN) architecture
consists of 4 such beads connected sequentially.

Layer Name Layer Type Patch Size Linked to

Layer 1 Convolution 1 × 1 Input
Convolution 3 × 3 Layer 1

Layer 2 Convolution 1 × 1 Input
Convolution 5 × 5 Layer 2

Layer 3 Max − Pooling 3 × 3 Input
Convolution 1 × 1 Layer 3

Append 1 Concatenate Layer 1
Layer 2

Layer 4 Convolution 1 × 1 Append 1
Convolution 5 × 5 Layer 4

Layer 5 Convolution 1 × 1 Append 1
Convolution 3 × 3 Layer 5

Append 2 Concatenate Layer 3
Layer 5

Layer 6 Max − Pooling 3 × 3 Append 2
Convolution 1 × 1 Layer 6

Append 3 Concatenate Layer 4
Layer 6

Fig. 3: Proposed CNN (BCNN) architecture. The different blocks
represent different convolutional and max-pooling layers as shown
in the colour map (legend)IET Research Journals, pp. 1–7
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Thus, integrating sparsity in the learning algorithm can funda-
mentally solve the problem of learning an optimal representation
[19]. The primary auditory cortex in mammals have a sparse archi-
tecture [20]. Imitating the natural sparse architecture of auditory cor-
tex in mammals, by learning a sparse representation can efficiently
process audio signals.

Even though depth is very important for deep neural architec-
tures, the results presented by Sainath and Parada [1] in context to
speech recognition demonstrate that increasing depth unnecessarily
may further degrade the performance of learning algorithm. He et al.
[14] tackles the problem of learning very deep neural architectures
by introducing shortcut connections. Thus, it can be inferred that it is
important to progressively extract complex but also coherent feature
representations.

3.5 Implementation Details

The proposed Braided Convolutional Neural Network (BCNN)
architecture consists of 4 similar structures (referred to as a bead)
connected sequentially as shown in Figure 3. The architecture of
a single bead is summarized in Table 1. Each bead involves sev-
eral convolutional and max-pooling layers connected in a braided
fashion.

As explained in Section 3.4, learning algorithm utilizes multiple
dense connections of standard kernel size 3 × 3 and 5 × 5. Each
bead makes an effective use of kernel size 1 × 1 to reduce com-
putational complexity. SigOpt API was used for defining the best
hyperparameters such as the number of filters and the number of
layers. SigOpt is an AutoML solution which uses a bayesian method
to construct a feedback mechanism between model output and dif-
ferent values for hyperparameters. Thus, the model can be tuned
by selecting the best network parameters to maiximize performance
[48].

A substantially deep neural network suffers from performance
degradation [14]. Nonetheless, depth is very crucial for a deep
neural network. The proposed methodology addresses the problem
of degradation by improving information flow between consecu-
tive layers of each bead. Each bead consists of three pairs i.e. (i)
convolution 1 × 1 convolution 3 × 3 , (ii) convolution 1 × 1
convolution 5 × 5 and (iii) max− pooling 3 × 3 convolution
1 × 1. The three sets of extracted feature maps are concatenated in
different combinations. Braiding feature maps (as shown in Figure
3) preserves and increases the variance of the outputs, encouraging
feature reuse. The proposed architecture of a single bead (as shown
in Table 1) consists of 3C2 combinations of the three different pairs
as explained above. The outputs of 3C2 combinations of convolu-
tional layers are concatenated using average-pooling before feeding
the feature maps to the following bead.

Each bead although have similar structure consist of substantially
increasing representation depths to achieve state-of-the-art benefits
in terms of classification accuracy [44]. The spatial size is decreased
gradually to avoid extreme compression at the penultimate layer to
fully connected layers. In order to guarantee proper concatenation of
layers all the feature maps are zero-padded to maintain spatial size
in consecutive layers. Finally, the resultant feature maps obtained as
output of the fourth bead are fed to a fully connected softmax layer
for classification.

The aim of proposed deep neural architecture is to learn appro-
priate kernels (or filters) for accurate audio classification. Adadelta
optimizer [49] is used to learn suitable kernels. Adadelta dynam-
ically adjusts with time and uses first order information with
least overhead computation loss beyond stochastic gradient descent
(SGD). Adadelta is similar to Adagrad as it also aims to adapt learn-
ing rate. Agagrad accumulates all the past squared gradients which
is very inefficient. Adadelta uses a window of decaying past squared
gradients (referred to as moving average). The moving average of
squared gradients is defined as in Equation 1.

g2MA =
g2M + g2M + . . .+ g2M−(n−1)

n
=

1

n

n−1∑
i=0

g2M−i (1)

Fig. 4: Comparative performance of the proposed BCNN on GSCv1
dataset, in terms of average recognition accuracy.

For every new value, the simple moving average is updated,
using Last-in-First-out Scheme (LIFO). The procedure is shown in
Equation 2

g2MA = g2MA,prev +
g2M
n

−
g2M−n

n
(2)

However, Adadelta updates the moving average recursively decaying
the average. Storing all the squared past gradients is an inefficient
method. Adadelta defines moving average g2MA at step t as in
Equation 3.

g2MA,t = γ · g2MA,t−1 + (1 − γ)g2t (3)

The term γ is analogous to momentum in Stochastic Gradient
Descent (SGD). Finally, the parameters θt is updated as shown in
Equation 4.

∆θt = − η√
g2MA,t + ε

g2t (4)

where η refers to the learning rate.

4 Experimental Results

The following section explains the benchmark datasets, error estima-
tion methods and specifications of parameters used for assessing fea-
sibility of BCNN. Three benchmark datasets containing short audio
files have been used for evaluation, namely (i) Google Speech Com-
mands Dataset (GSCv1), (ii) Google Speech Commands Dataset
(GSCv2), (iii) Urban Sound 8K (US8K) datasets.

4.1 Datasets

The first set of experiments were performed on the Google Speech
Commands Dataset (GSCv1) which consists of 64,727 short audio
clips of 30 english words [50]. The goal is to discriminate among
speech commands such as yes, no, up, down, left, right, on, off, stop,
go and unknown. The remaining 20 auxiliary words are designated
as ‘unknown’.

Similar to GSCv1 dataset, the Google Speech Commands Dataset
(GSCv2) [51] consists of 105,829 one-second long audio of 35
english words. The dataset is used to discriminate among yes, no,
up, down, left, right, on, off, stop, go, zero, one, two, three, four,
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Fig. 5: Comparative performance of the proposed BCNN on GSCv2
dataset, in terms of average recognition accuracy.

five, six, seven, eight, nine and unknown. The remaining 15 words
are categorized into ‘unknown’ class.

The UrbanSound8K dataset [52] consists of 8732 sound clips upto
4 seconds in duration. In contrast to GSCv1 and GSCv2 datasets
which contain voice commands, US8K consists of short environ-
mental sounds. The task is to discriminate 10 sound classes:air
conditioner, car horn, children playing, dog bark, drilling, engine
idling, gun shot, jackhammer, siren and street music.

As discussed in Section 3, the original audio files are zero-padded
and re-sampled (to 8 kHz). Further, the preprocessed audio sig-
nal is transformed to a mel-spectrogram. The spectrogram images
are oblong. Hence, before feeding for classification spectrogram
images are resized to 96 × 96. Moreover, reducing the dimension
of the spectrogram before spatial aggregation leads to faster train-
ing without much loss of spatial representation [44]. GSCv1 and
GSCv2 datasets contains much more data for ‘unknown’ class. Uti-
lizing class weights while training prevented severe class distribution
skews.

4.2 Computational Complexity

This section discusses the computational complexity for the pro-
posed approach, a key aspect of voice-based authentication schemes.

In terms of complexity class of decision problems, a basic neu-
ral network with two layers each with three nodes and threshold
activation is NP-complete [53]. He and Sun [54] introduced gen-
eral formula for complexity for various convolution layers in a
typical CNN.

Typically, CNNs use a massive network of mutual weights
to automatically extract relevant features for accurate classifica-
tion. This raises CNN’s computational complexity. However, train-
ing CNNs have been practically tractable in various fields [11, 44].
Some techniques allowing improper learning are non-linear acti-
vation functions such as ReLU, over-specification, and weight-
regularization.

The running time assessed significantly depends on the specific
equipment hardware and software used to test CNN design. The
experiments were undertaken on a workstation with CPU as Intel
Core i7 and 6 GB Nvidia Geforce GTX 1060 GPU. Python scripts
are based on TensorFlow and Keras. A single audio signal input ( 4
sec) executes in 1s, which involves generating spectrogram from an
input file, prediction and rendering visualization.

Fig. 6: Comparative performance of the proposed BCNN on US8K
dataset, in terms of average recognition accuracy.

4.3 Speech Recognition Experiments

With advent of speech-driven user interfaces, it is important to rec-
ognize pre-defined commands with exactness. Apart from smart
devices, the applications span to developing an OpenKWS system
or content based search in conversations.

The classification accuracy of the proposed methodology is pre-
sented in Figure 4 and 5 along with accuracy achieved by CNN
[1], ResNet [41] and attention based Convolutional Recurrent Neu-
ral Network (CRNN) [55]. These proposed BCNN outperforms all
the models on benchmark datasets.

DNNs have outperformed GMM-HMMs in the domain of audio
classification [30]. However, DNNs suffer from high computational
complexity due to dense connections in-between layers. Typically,
CNN architectures perform pooling to limit the overall computation
of the network. Sainath et al. [32] claim that typical CNNs per-
form pooling in the frequency domain which is not applicable for
audio classification. They present a fstride-CNN which strides over
frequencies achieving 27% improvement over DNN and 6% over
typical CNNs in terms of recognition accuracy. Further, Tang and
Lin [41] mirror a neural architecture based on ResNet [14] which
outperforms fstride-CNN proposed by Sainath et al. [32] achieving
95.2% accuracy on GSCv1 dataset. A neural-attention based recur-
rent neural architecture is trained by Douglas et al. [55], which
performs convolutions only in the time domain achieving 94.1%
accuracy.

In this work, several benchmark models such as GoogLeNet [13],
VGG16 and VGG19 [12] are trained, to assess the performance
of CNNs on auditory data. GoogLeNet being much more mem-
ory efficient and substantially deeper than VGG, attains a better
accuracy. GoogLeNet has a significantly different architecture than
VGG allowing efficient training of 22 convolutional layers. This is
possible by batch normalization and RMSprop. However, BCNN
significantly outperforms other models achieving 97.15% and 95%
average recognition accuracy in GSCv1 and GSCv2 respectively.
Superior performance of proposed BCNN without using any data
augmentation, regularization or batch normalization indicates that
BCNN is less prone to overfitting.

4.4 Environmental Sound Classification

Data centers are accruing vast amounts of data, especially in per-
spective to smart cities. Environmental sound plays an important
role in providing a holistic view of the city. With development of
IoT, researchers are using wireless sensors to analyze environmental
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Fig. 7: Performance of the proposed BCNN on US8K, GSCv1 and
GSCv2 datasets expressed in terms of CMC curve.

sounds particularly for bird species recognition [23], obtain obstacle
information for visually-impaired people [24] and audio surveillance
[25].

The experimental results of the proposed BCNN architecture on
US8K Dataset is presented in Figure 6 along with the mean accu-
racy attained by SB-CNN [40], SKM [56] and PiczakCNN [57]. The
figure also compares the different approaches with exemplar neural
architectures such as VGG16, VGG19 [12] and GoogleNet [13].

SKM [56] presents a “’shallow” dictionary-learning based on
spherical k-means. As the datasets for environmental sound classifi-
cation is significantly smaller in size (87.64% smaller than GSCv1
dataset) limited variations [40], SB-CNN proposes an in-depth aug-
mentation technique to train a CNN on the US8K dataset. Piczak-
CNN performs comparably to SB-CNN and SKM. However, the
proposed BCNN significantly outperforms the techniques. In con-
trast to SB-CNN, proposed BCNN architecture uses a smaller (96 ×
96) mel-spectrogram input image. SB-CNN uses a mel-spectrogram
input image of size (128 × 128). This emphasizes that BCNN is
much more efficient in progressively extracting higher level repre-
sentations resulting in 16.5 % relative improvement in average accu-
racy. In addition, the proposed CNN doesn’t use any explicit data
augmentation (used in SB-CNN) or regularization (used in Picza-
kCNN). On that account, it can be stated that braided connectivity
allows a CNN to learn optimal feature maps from mel-spectrograms
realizing accurate classification.

Although GoogLeNet has much more efficient architecture than
VGG16 and VGG19, it tends to overfit the US8K dataset. This can
be attributed to fewer number of samples in comparison to GSCv1
and GSCv2 datasets. It also suggests that it is difficult to make effi-
cient use of several neural architecture design principles used in
GoogLeNet if the dataset is undersized. VGG16 and VGG19 are
comparatively easier to train and it is effective for datasets in general.

5 Discussion

The following section explores several aspects of the proposed
BCNN architecture. The proposed has architecture has significant
modifications from the existing deep neural architectures used for
audio classification which lead to superior recognition accuracy.

5.1 Feature Reuse

The proposed BCNN allows layer connectivity (as defined in Table
1), to extracted feature maps by the six preceding convolution layers
in a single bead. An experiment was performed to analyze the use of
this incentive by the BCNN network trained on GSCv2 dataset which
estimates the average strength for each of the six convolutional lay-
ers. Figure 7 shows a heat map with six layers for all four beads
and their respective weights. The average weight is a workaround to
estimate a convolutional layer’s reliance on its previous layers. There
can be several observations from the Figure 7 :

Fig. 8: Performance of the proposed BCNN on US8K, GSCv1 and
GSCv2 datasets expressed in terms of CMC curve.

1. For each bead, the weights are distributed over multiple layers.
This suggests that features extracted by the initial layers are used
directly throughout the bead.
2. The lowest weights are designated for Layer 2 and Layer 6
meaning they obtain less relevant features as compared to other
layers in the bead.
3. The final Bead 4 depicted last row of the Figure 7 uses weights
across the entire bead. It appears that the latter feature maps are
clustered and indicate that more high-level features can indeed be
generated late in the network.

5.2 CMC curves

Figure 8 presents the Cumulative Match Characteristic, used for
assessing the closed-set identification performance of a model.
Rank-k denotes probability that the model predicts the correct label
within top-k predictions.

CMC curves are important especially with respect to audio clas-
sification as, in real scenarios there is a need to look at audio context
for accurate predictions. For example, a smart assistant (trained for
KWS task) can query the user to choose right course of action if user
command is unclear. For a successful query to user, it is important
the model has correct predictions within top-k predictions. The pro-
posed BCNN achieves very high rank-2 accuracy of 97.5%, 98.84%
and 98.06% for US8K, GSCv1 and GSCv2 datasets respectively.
This suggests that the proposed BCNN is promising in field of audio
classification.

6 Conclusions

This paper evaluated a deep convolutional neural architecture for
two-dimensional image classification of sound events using a mel-
spectrogram representation. In particular, it assessed different stan-
dard architectures such as VGG16, VGG19 and GoogleNet on
benchmark datasets such as GSCv1, GSCv2 and US8K. The experi-
mental results confirm that by introducing sparsity and braided con-
nectivity in consecutive layers, a CNN can efficiently learn spectral
correlations eliminating environmental variations. BCNN achieves
best average recognition accuracies in all three datasets irrespective
of domain (environmental or speech commands) of audio samples.
The key idea of the proposed novel architecture is the combination
of sparsity with an efficient reuse of convolutional feature maps. It
also suggests that a CNN can be used to imitate auditory neurons in
mammals achieving improved results on competitive datasets.
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