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Abstract: Biometrics is being widely accepted for user authentication across the globe. Integration of biometrics in the daily life
provokes the need to design secure authentication systems. This study proposes the use of outer ear images as a biometric
modality. The comparable complexity between the human outer ear and face in terms of its uniqueness and permanence has
increased interest in the use of ear as a biometric. However, similar to face recognition, it poses challenges of variation in
illumination, contrast, rotation, scale and pose. Owing to the extensive work in the field of computer vision using convolutional
neural networks (CNNs), its feasibility in the field of ear biometrics has been presented in this work. The proposed technique
uses a CNN as a feature extractor and a support vector machine (SVM) for the classification task. The joint CNN-SVM
framework is used for mapping ear images to random base-n codes. The codes are further hashed using the secure hash
algorithm SHA-3 to generate secure ear templates. The feasibility of the proposed technique has been evaluated on annotated
web ears dataset. This work demonstrates 12.52% average equal error rate without any image pre-processing, which shows
that the proposed approach is promising in the field of secure ear biometrics.

1 Introduction
Biometrics is ingrained in recognising a user. The basic idea is
pivoted on quantifying the behavioural and physiological
characteristics for accurate user verification. The present biometric
systems have some drawbacks. First of all, multiple readings of a
biometric template are prone to variation in illumination,
maquillage, pose, resolution and expressions. Human traits can be
changed in accidents, surgical alterations and with old age. Hence,
they rarely match unless biometric templates are acquired in a
controlled environment. Second, biometric traits are non-revocable.
When a password for ATM access is compromised, the bank can
revoke old PIN and issue a new PIN. However, in the case of a
biometric sample, replacement is not possible. In addition, different
passwords can be chosen for different financial institutions.
However, human traits once compromised can undermine security
across different institutions.

Clearly, biometric templates were not designed for a secure
storage. Cappelli et al. [1] showed that it is possible to perform
masquerade attacks by reconstructing fingerprint images from
templates. Therefore, biometric template protection becomes
extremely important and there is an ever-growing need to look into
newer avenues for better security.

This paper addresses the need for a secure and cancelable
biometric template generation as an illustration to ear biometrics.
The human outer ear as a biometric has gained popularity among
the research community [2] owing to its comparable complexity
with face in terms of robustness, distinctiveness, availability,
accessibility and acceptability [3]. The ear is also being used in
Android [4] and iOS applications [5].

This paper presents a secure and revocable authentication
scheme in terms of sensitivity and specificity. The proposed
methodology is evaluated on ear database, i.e. annotated web ears
(AWE) database. A cancelable and tunable security is proposed by
using random base-n codes to protect the authentication system
from brute-force attacks.

The paper is organised as follows. The literature corresponding
to secure biometrics and ear biometrics is described in Section 2.
Section 3 discusses the proposed approach for secure ear
recognition. The performance evaluation and the security for the
proposed methodology are presented in Sections 4 and 5,

respectively. Section 6 reports the performance of the proposed
approach with some of the other prominent techniques. Section 7
summarises and concludes the paper.

2 History
2.1 Ear biometrics

Using a manual technique of 12 measurements from the centre of
the ear, Iannarelli [6] built up the first ear recognition system.
Recently, a standout amongst the most conspicuous ear biometric
strategies was developed by Burge and Burger [7]. They localised
the ear using deformable shapes and achieved identification
utilising a Gaussian pyramid transformation of a human ear.
Moreno et al. [8] developed the first fully automated system for ear
recognition using an ensemble of neural classifiers with a
compression network to extract macro-features. Ghoualmi et al. [9]
expressed that the vast majority of biometric strategies give
extremely poor precision when images are used without any pre-
processing. Detailed works by Omara et al. [10] and Anwar et al.
[11] have suggested better image pre-processing pipelines for
recognition of variance in scale, pose and illumination.

In the purview of ear biometrics, researchers have primarily
focused on devising new feature extraction techniques for ear
images such as wavelet-based [12, 13] and filter-based [14, 15]
techniques. One of the most efficient feature extraction techniques
is force-field transformation that shows 99.2% recognition
accuracy on the XM2VTS dataset [16].

As suggested by LeCun et al. [17], selecting features on the
basis of classifier performance turns out to be a vastly improved
approach. Taking a crude image as input without any pre-
processing, a convolutional neural network (CNN) is able to
generate feature vectors to train a posterior classifier pivoting on
the back-propagation algorithm. This dispenses any explicit feature
extraction pipeline. Therefore, CNNs perform better as compared
to the traditional classification techniques that are based on hand-
crafted features.

2.2 Cancelable biometrics

Secure biometric authentication has been studied widely by
researchers either by (i) employing fuzzy methods to generate
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biometric-based cryptosystems (biometric salting) or by (ii)
applying a non-invertible transform to acquired biometric data
[18].

2.2.1 Biometric cryptosystems: In the literature, biometric
cryptosystems have been implemented by either combining a user-
specific key with a biometric sample or directly generating a key
from the biometric template to achieve a random distorted template
[19]. Some of the common schemes are fuzzy commitment, fuzzy
vault and fuzzy extractor. Apart from these, Nagar et al. [20]
proposed a hybrid scheme for securing fingerprint templates.

The fuzzy commitment was proposed by Juels and Wattenberg
[21]. It is based on de-committing of a key using a biometric
sample by creating a hybrid between error correcting codes and
cryptography. Fuzzy commitment schemes have been applied on
the iris [22–24] and fingerprint [25]. However, such systems suffer
from shortcomings such as infeasible assumptions, limited error
correcting capacity and limited length of keys.

Fuzzy vault schemes [26] can be viewed as an extension to
fuzzy commitment schemes. Such techniques have been employed
as an application to smart cards [27], fingerprint [28–30],
handwritten signature [31, 32], face recognition [31] and iris
images [33]. Fuzzy vault schemes have been proved to be reliable,
secure and revocable. However, they can be compromised if their
parameters such as polynomials and chaff points are not protected.
Moreover, original biometric data can be easily identified by
correlating values from different vault systems. Chang et al. [34]
proposed that it is possible to exploit the non-uniformity of
biometric modalities from a set of chaff points using statistical
analysis.

The fuzzy extractor scheme [35] is used to authenticate a user
by extracting a string from the biometric sample as a key in such a
way that extraction is invariant to noise. In order to enhance
security, a helper key is generated at the time of the enrollment
phase. The efficiency of the system depends upon the extractor and
its ability to reproduce the same string or a string close enough
(according to a pre-defined distance measure) in an uncontrolled
environment.

2.2.2 Non-invertible transformation: It is possible to exploit
biometric cryptosystems to extract the original biometric sample
[1]. However, in the feature transformation approach, the biometric
sample is transformed in such a way that it is non-invertible. Thus,
it ensures that the original biometric sample is non-recoverable.
The matching of biometric templates is performed in the
transformed subspace. Non-invertible transformations were
proposed by Ratha et al. [36]. They transformed fingerprint data
using Cartesian, polar and functional transformations. A bi-
directional 2D random projection was proposed by Leng et al. [37]
for cancellable face and palmprint recognition. An extensive
survey on cancellable biometrics has been presented by Rathgeb
and Uhl [19].

Recently, there has been focus on employing deep learning
methods for secure biometric authentication. Deep learning
approaches are based on generating a transformed feature vector
that uniquely represents biometric data yet reduces any correlation
between original biometric data and the transformed feature vector.
Such techniques have been applied to the face [38, 39] and
palmprint [40]. In the field of secure biometrics, the ear sample is
used in a multi-modal fashion either with the face or other soft
biometrics. Paul and Gavrilova present a multi-modal recognition
by fusion of features extracted from face and ear to generate the
cancellable template using random projection and the fuzzy
communication scheme [41].

The proposed methodology uses a CNN to obtain noise
invariant feature vectors for classification. Support vector machine
(SVM) is used to train a discriminant function that learns mapping
of extracted features (obtained from CNN) to random base-n codes.
To prevent violation of data, the codes are hashed using a
cryptographic hash function, the secure hash algorithm
(SHA3-256) [42]. Thus, the proposed methodology overcomes
vulnerabilities such as infeasible assumptions, limited key length,

error correction, non-uniformity of biometric data and data
acquisition from uncontrolled environments.

3 Proposed methodology
This paper proposes a recognition methodology for ear biometrics
that achieves high accuracy while maintaining a high level of
security with no pre-assumptions in terms of variations in pose,
illumination and the type of security attack.

As the human outer ear has been shown to be unique, invariant
and permanent [6], the first step in the enrollment process is
capturing an ear image. Similar to face recognition, the image can
be captured from a digital camera. CNNs have proved their might
in image classification and recognition. They can be trained to be
invariant to pose, illumination and noise.

The proposed methodology uses a CNN as a feature extraction
module that takes an image of the outer ear as input and generates a
feature vector. This is achieved by removing the fully connected
layers responsible for classification.

A typical CNN consists of several convolutional layers as well
as fully connected layers. The fully connected layers classify
extracted features into classes. The last layer prior to the fully
connected layers (known as bottle neck features or BNFs) can be
used as features with any generic classifier [43]. Researchers have
shown that generic descriptors extracted from the penultimate layer
of CNN are very efficient for classification [44, 45]. In this work,
SVM is used as to classify BNFs obtained from CNN.

Traditional biometric authentication systems store original
biometric samples. However, such personal identifiable
information (PII) or sensitive personal information (SPI) can
become an issue in terms of security as it is prone to data theft and
information extortion. Therefore, to ensure security, random base-n
codes are used as output labels for classification such that they bear
no correlation with the original biometric sample.

These codes are hashed using secure hash algorithm (SHA-3)
[42] and stored as a template for verification. Hashing serves as a
non-invertible transformation that enables secure storage of codes
(being used as classification labels).

The proposed joint CNN-SVM framework is illustrated in
Fig. 1. The proposed methodology aims to exploit the advantages
of CNN, SVM and SHA3-256 in a single mechanism. Therefore,
the framework has been illustrated in three major components: a
CNN serving as a feature extractor, an SVM acting as a posterior
handling module for classification task and SHA3-256 for secure
template generation. 

During an attempt, a test sample is fed as an input to the trained
model that computes a hash code and compares it with the codes
stored in a database to authenticate the user. Hash codes are non-
invertible; they eliminate any possibility of extracting the original
biometric sample. In case, hash codes get compromised, the
institution can simply use a different set of random codes as labels,
thus introducing cancellability in the proposed methodology.

The subsequent sections describe the various components of
proposed methodology.

3.1 Convolutional neural network

CNNs are a class of neural networks. Similar to traditional neural
networks, they are composed of several weights and biases that are
learned as per the desired mapping of inputs and outputs. The
ability of CNNs in the field of large-scale image recognition [46,
47] was realised in the ImageNet Large Scale Visual Recognition
Competition (ILSVRC) challenge [48].

A CNN is an end-to-end non-linear system that can be trained
to learn high-level representations directly from raw images. The
main components of the CNN architecture are convolution, pooling
and fully connected layers. An input signal is a greyscale image of
an ear as a matrix Iϵℝw × h × c, where w, h and c are input width,
height and the number of channels, respectively. For convolution, a
weight matrix Wϵℝp × p × c × k is convolved with input I. The weight
matrix spans across a small patch of size p × p with a stride s,
where p ≤ min (w, h). The weight sharing across patches helps to
model local correlations in the input image. The weight matrix is
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used to generate k feature maps. A convolution operation on the
layer I can be summarised as follows:

O = σ ∑
c

W × I + b (1)

where Oϵℝ((w − p)/s) × ((h − p)/s) × k is the output matrix, b denotes bias
and σ is an elementwise non-linearity operation (e.g. RELU).

After performing convolution, a pooling operation sub-samples
the input matrix to summarise information, i.e. retains important
information while reducing spatial resolution. In max-pooling, only
the maximum value of spatial neighbourhood (say 2 × 2 window)
is preserved. Thus, pooling helps in removing variability that exists
due to illumination, pose, rotation and noise. It also helps to reduce
the computation for later layers by reducing the size of matrices.

The proposed CNN is composed of four stacks of convolution
and pooling layers followed by a fully connected layer. During
training, the last layer is associated with a multiclass cross-entropy
loss function as presented in the following equation:

loss = − ∑
n = 1

N
ypred, tlog(ppred, t) (2)

where N = number of images (training samples), pred = predicted
user id, t = actual target user id, p = predicted probability and y = a
binary indicator 0 or 1, determining whether prediction is the same
as target.

The parameters of CNN are trained using Adam optimiser [49]
that takes into account benefits of Adagrad [50] by computing
adaptive learning rates and RMSprop optimiser [51] by calculating
decaying average of past squared gradients

θt + 1 = θt − α
mt

vt + ϵ (3)

where θt + 1 = updated value of parameter, θt = previous value of
parameter, α = step size, mt = first-order moment (mean), vt = 
second-order moment (variance), ϵ = small number (say 10−7 to

prevent division-by-zero). The algorithm has been efficient across
deep learning tasks as it prefers flat minima in error hyperplane
avoiding local minima and thus achieving better generalisation [52,
53].

To avoid overfitting, dropout [54] and L2 regularisation are
applied to both convolutional and fully connected layers. As a
result, co-adaptation of nodes and over-dependence on large
weights is prevented. In addition, employing batch normalisation
[55] ensures that covariance shift is minimal, improving
consistency and reproducibility of experiments.

Table 1 summarises the proposed CNN architecture as
illustrated in Fig. 2. 

3.2 Biometric template protection

In a traditional biometric authentication system, features from a
biometric sample are stored in a database as a template. Such
systems are prone to data leakage leading to identity theft.
Therefore, traditional biometrics are dangerous for user privacy. It
is important to store the template in such a way that it cannot be
correlated with the subject's original biometric sample. This
ensures that even if the template is compromised, the user cannot
be impersonated.

This problem is addressed by mapping extracted features to
random n-ary codes. The benefits of using random n-ary codes are
twofold. First, it minimises any correlation between the biometric
sample and the stored template. Second, if the template is
compromised, there is flexibility to reassign another random code
as a new user id, thus introducing cancellability.

In the proposed methodology, the original biometric template is
not stored. Moreover, the random codes are allocated securely only
during training to the client not stored in database. During an
attempt, features are extracted from the ear image sample using
CNN, which is fed to an SVM for classification. The SHA3-256
hash digest of the predicted label for the test sample (by SVM) is
compared with stored hash digests for verification of the subject.

So, neither the original biometric sample nor the assigned
random code is required to be stored in database eliminating any
scope for data leakage. Rather, non-invertible hash digests are
stored for matching during evaluation. These hash digests are non-

Fig. 1  Proposed authentication system based on secure cancellable biometrics
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invertible, and hence, they cannot be exploited to retrieve the
original biometric sample. Thus, user privacy is preserved.

3.2.1 n-ary code generation: Randomly generated base-n codes
of length m (e.g. a binary code of bit length 256) are used as labels
for different users. For example, binary (referred to as base-2) uses
only two symbols 0 and 1, ternary (base-3) use three symbols 0, 1
and 2 and so on. Random generation of codes ensures no
resemblance to the input biometric sample. Therefore, an intruder
would have to brute-force all possible codes i.e. mn attacks, which
is computationally impossible provided m > t, a manually chosen
threshold.

Entropy plays an important role in deciding whether a code is
likely to be breached. For an n-ary code

H = − ∑
i

n
pi ⋅ logn pi (4)

where H = entropy and pi = occurrence probability of symbol i,
assuming ∀ i, pi > 0.

According to (4), for maximum entropy of an n-ary code of
length k, each symbol i must have an occurrence probability of 1/n.
To evaluate the performance of the proposed methodology,
different base-n codes are used as classification labels (as shown in
Figs. 3 and 4). Further, the methodology is also assessed for
different code lengths. To evaluate the impact of code length on
recognition accuracy, the following range was chosen for
experimentation: nϵ(2, 9) and mϵ2(6, 11). 

3.2.2 Support vector machines: The proposed technique uses a
CNN as a feature extractor and an SVM for the classification. The
joint CNN-SVM framework is used for mapping ear images to
random base-n codes.

A CNN is trained to classify, but once trained, a CNN becomes
inclusive to classes. Re-training CNN for the addition of new
classes is a cumbersome task as it requires collecting images from
all of the users again. The ability of CNNs to generate noise-
invariant feature vectors can be exploited by extracting generic
descriptors from activations of the penultimate layer of CNN
(bottle neck features or BNFs) [43–45]. These descriptors can be
treated as features of a biometric sample.

The proposed methodology uses a linear SVM for classification
of BNF extracted using CNN. Moreover, the linear SVM is trained
in an incremental fashion that enables the addition of new users at
any point in time.

The last convolution layer is ravelled into a single vector of size
131,072, which poses a hindrance for training SVM. SVMs scale
super-linearly [56]. Therefore, principal components analysis is
employed to reduce the vector size to 1024. SVMs are based on the
quadratic programming problem and their complexity scales
between O(nfeatures × nsamples

2 ) and O(nfeatures × nsamples
3 ) [57]. There is

a chance of overfitting if nfeatures is much greater than nsamples. As
the number of ear image samples in AWE dataset is 1000, a feature
vector of size 1024 is an appropriate choice.

For an efficient calculation of principal components,
randomised singular value decomposition [58] was used. The final
classification is attained using a linear SVM with γ = 0.001, which
is inversely related to the radius of influence and the regularisation
parameter, C = 10. The linear SVM is trained using one versus all
multi-class strategy.

3.3 Secure storage of assigned codes

This section explains the strategy for generating secure biometric
templates. The security concerns in a traditional biometric system
can be alleviated using cryptographic hash functions. Such
functions transform an arbitrary block of data to a fixed size, non-
invertible string. This removes any kind of resemblance between
the biometric sample and stored template.

Cryptographic hash functions are used to generate hash digests
of pre-defined length from input data. The utility of a hash function
is characterised by its time complexity, diversity, and non-
invertibility. Therefore, the security of a hash function can be
assessed by its speed, distinctness in different hash digests and the
difficulty in decrypting the generated hash digest.

NIST recently released SHA-3 [42], the latest companion of
secure hash algorithms. With successful attacks on previously
accepted standard hash function such as MD5 [59] and SHA-1
[60], there has been dependence on SHA-2. However, both SHA-1
and SHA-2 come under a common class of algorithm called
Merkle Damgård construction [61]. Hence, it is likely that even
SHA-2 might have similar weaknesses. Therefore, NIST launched
SHA-3 in 2007 [62] that was accepted as the new standard in 2012.

In this work, the extracted features from ear images (by CNN)
are mapped to random codes (as class labels) using SVM (as
explained in Section 3.2.2). These random codes are hashed using
SHA-3 [42] at the last stage of enrollment for secure storage of
random codes. In this paper, SHA-3 is used because it is the new
standard for robust security. A user is verified by matching hash

Table 1 Summarised CNN architecture
Layer Parameters
convolution patch size: 7 × 7 depth: 16
batch normalisation > ReLU
activation

momentum: 0.9 epsilon: 0.001

maxpooling patch size: 2 × 2 depth: 16
regularisation dropout: 0.2 L2 beta: 0.5
convolution patch size: 5 × 5 depth: 32
batch normalisation > ReLU
activation

momentum: 0.9 epsilon: 0.001

max pooling patch size: 2 × 2 depth: 32
regularisation dropout: 0.2 L2 beta: 0.5
convolution patch size: 3 × 3 depth: 64
batch normalisation > ReLU
activation

momentum: 0.9 epsilon: 0.001

max Pooling patch size: 2 × 2 depth: 64
regularisation dropout: 0.2 L2 beta: 0.5
convolution patch size: 1 × 1 depth: 128
batch normalisation > ReLU
activation

momentum: 0.9 epsilon: 0.001

max pooling patch size: 2 × 2 depth: 256
regularisation dropout: 0.2 L2 beta: 0.5
fully connected layer number of neurons: 512 —
fully connected layer number of neurons: 80 —
regularisation dropout: 0.2 L2 beta: 0.5
fully connected layer number of neurons: 100 —

 

Fig. 2  CNN used in proposed methodology [the max-pool layers are skipped for brevity]
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digest of his test biometric sample (ear image) with the hash digest
template. The proposed methodology uses SHA3-256 with the
permutation function of the sponge construction [63] characterised
by bitrate = 1088, capacity = 512 and output size = 256.

4 Performance evaluation
The following section provides an overview of datasets, evaluation
protocols and specifications of parameters used for performance
evaluation.

4.1 Dataset

The AWE dataset [64] contains 1000 cropped ear images of 100
distinct subjects that were collected from the web with the goal of
studying unconstrained ear recognition. The publicly available
USTB-III dataset [65] consists of 786 face profile images of 79
subjects under different illumination from a distance of 1.5 m.
Every person has 10 images including a profile image and images
turning to left 5°, 10°, 15° and 20°.

The performance measures for the proposed methodology are
equal error rate (EER), false match rate (FMR) and false non-
match rate (FNMR). These standard measures were realised by
taking the average of receiver operating characteristic (ROC)
across all classes.

4.2 Experimental setup

First of all, ear images are extracted from profile images as ear
detection is an indispensable part of ear recognition. A histogram
of oriented gradients (HOG) with an SVM framework has been
employed to crop ear images from face profile images [66].
Furthermore, the cropped ear image is grey-scaled, resized
(64 × 64) and normalised before feeding them to CNN for feature
extraction. Traditional image pre-processing algorithms (such as
histogram equalisation) have a tendency to distort the image based

on outliers, which results in loss of information. Hence, no explicit
image pre-processing algorithms were used.

From the available 10 images for every user, 6 images are used
for training, 2 images for validation and 2 images for testing. The
proposed CNN is trained on 100 users (AWE dataset). The 79 users
from USTB III dataset are used to simulate impostors during the
training phase. The weight of the proposed CNN model is
initialised using a normal distribution of μ = 0, σ = 0.01. The
architecture consists of ∼90,000 parameters that were sufficient for
a database consisting of 10 images per user. Deeper architectures
tend to converge to a local minimum due to limited training data,
thereby over-fitting and yielding less accurate results.

4.2.1 Computational complexity: The following section presents
computational efficiency for the proposed methodology, which is a
key aspect in biometric authentication systems.

A simple two-layer three-node neural network with threshold
activation functions is NP-complete [67]. Recently, a general
formula for the total time complexity of all convolutional layers in
a CNN was presented by He and Sun [68].

CNNs use a massive network of shared weights and biases that
enables automatic feature extraction. However, it increases the
computational complexity of the CNN. Despite high computational
complexity of CNN, several tricks that enable improper learning
are ReLU activation function, overspecification and regularisation
[69]. The evaluated time highly depends on the specific hardware
configuration and the platform used for evaluating the CNN
architecture.

All of the experiments in this paper are performed on Dell
Precision Tower 5810 with CPU as Intel Xeon Processor and two
2-GB Nvidia Quadro K620 GPUs. The scripts are written in python
based on TensorFlow and scikit-learn. The running time for a
single image is ∼1 s, which includes reading input image, inference
and visualisation.

Fig. 3  Impact of nature and length of random codes (used as classification labels) on recognition performance of the proposed methodology. base-n denotes
number of symbols used for code generation. base-2 (two symbols: 0 and 1), base-3 (three symbols: 0, 1 and 2), base-4 (four symbols: 0–3) base-5 (five
symbols: 0–4) base-6 (six symbols: 0–5) base-7 (seven symbols: 0–6) base-8 (eight symbols: 0–7) base-9 (nine symbols: 0–8) ROC curves for codes of lengths
64
(a), 128 (b) and 256 (c) with different number of symbols used for code generation

 

Fig. 4  Impact of nature and length of random codes (used as classification labels) on recognition performance of the proposed methodology. base-n denotes
number of symbols used for code generation. base-2 (two symbols: 0 and 1), base-3 (three symbols: 0, 1 and 2), base-4 (four symbols: 0–3) base-5 (five
symbols: 0–4) base-6 (six symbols: 0–5) base-7 (seven symbols: 0–6) base-8 (eight symbols: 0–7) base-9 (nine symbols: 0–8) ROC curves for codes of lengths
512
(a), 1024 (b), and 2048 (c) with different numbers of symbols used for code generation
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4.3 Results

This section discusses performance evaluation of proposed
methodology evaluated on the fused dataset, as described in
Section 4.1. Figs. 3 and 4 show ROC curves. Figs. 5 and 6 show
EER and FNMR at FMR 1/10,000 values for different code
lengths, respectively. FNMR and FMR are defined as shown in the
following equations:

FMR = FP
FP + TN (5)

FNMR = FN
FN + TP (6)

where FMR = false match rate, FNMR = false non-match rate, FP 
= number of false positives, TN = number of true negatives, TN = 
number of true negatives, FN = number of false negatives and TN 
= number of true positives. EER is defined as the point at which
FMR equals FNMR.

ROC curves are shown in Figs. 3 and 4 with different sub-
figures (a–c), exhibiting performance of the proposed method
corresponding to the various lengths of random codes (64, 128,
256, 512, 1024 and 2048). Each curve in a sub-figure corresponds
to a ROC curve for a different length of the random code. For
example, Fig. 3a shows ROC curves for codes of length 64 with
different numeral systems such as binary and ternary that are used
for random code generation. The ROC curves demonstrate the
discriminating ability of a classifier based on the sensitivity
(1 − FNMR) and specificity (FMR).

The proposed methodology achieves up to 12.52% average
EER on the AWE dataset consisting of 100 users. The distribution
of EER values and FNMR@FMR 1/10,000 values is illustrated as

box plots in Figs. 5 and 6. Box plots characterise a distribution
using its minimum, lower quartile, median, upper quartile and
maximum values. Both the figures have similar interquartile
regions across all code lengths, which show that the EER values
and FNMR@FMR 1/10,000 values are stable with respect to code
length m and base n (μEER = 12.52%, μFNMR @ FMR 1/10, 000 = 16.1%).
This allows the authentication system to flexibly choose a security
level.

5 Security analysis
The following section analyses the security of the proposed
biometric authentication in defence to possible attacks such as false
acceptance rate (FAR) attacks, linkage attacks and hill climbing
attacks.

5.1 FAR attacks

There is a considerable chance of false acceptance in biometric
authentication systems. Such systems often face false rejects due to
variations in illumination, contrast, rotation, scale and pose in the
same class. Sometimes, there can be false acceptances due to high
correlation between different classes.

Therefore, biometric authentication systems are developed
assuming a very low probability of false acceptances (referred to as
false acceptance rate, FAR). According to the UK Government's
Biometrics Working Group (BWG) [70], typical systems are
configured at FMR 1/10,000. This indicates that two identical
subjects can be found in 104 trials, which require that the attacker
must already have a large database.

The security analysis of the proposed system is shown in Fig. 6.
The proposed methodology attains μFNMR @ FMR 1/10, 000 = 16.1%.The
distribution of FNMR@FMR 1/10,000 values is illustrated as box
plots in Fig. 6. The figure has similar interquartile regions across
all code lengths, which show that the FNMR@FMR 1/10,000
values are stable with respect to code length m and base n.

5.2 Linkage attacks

If the same biometric characteristic is utilised in different
institutions, as explained in Fig. 1, it results in similar or correlated
identities being stored in different databases. Such an unexpected
linkage of unrelated applications may be exploited by an adversary.

To overcome this drawback, the proposed methodology can
generate distinct pseudo user identities from the same biometric
features. In this work, an SVM is used to train a discriminant
function that learns mapping of extracted features (obtained from
CNN) to random base-n codes. Randomly generated base-n codes
of length-m (for example, binary code of bit length 256) were used
as labels for different users. As the codes are randomly generated,
they bear no resemblance to the input image. Consequently, there is
no possibility of correlated identities. Rather, the proposed
methodology provides the flexibility that different institutions can
use different random codes as user ids for the same person, thereby
removing any unexpected linkages.

5.3 Hill climbing attacks

A hill climbing attack deals with the possibility of an attacker to
generate synthetic examples to exploit false acceptance of a
biometric authentication system. An attacker uses an application
that generates biometric templates pivoting on match score of the
biometric system until it overcomes the decision threshold.

This weakness of the traditional biometric system is addressed
in this work by using randomly generated base-n codes of length-m
as labels for different users. Further, the codes are hashed using
SHA-3 for secured storage. As the stored hash digests are non-
invertible and bear no resemblance to input biometric data, an
intruder would have to brute-force all possible codes, i.e. mn

attacks, which is computationally impossible provided m > t, a
manually chosen threshold. For example, if a binary code of length
512 is used for authentication, an attacker would have to brute
force 2512 codes, which is infeasible.

Fig. 5  Graph visualising EER values across different base-n codes
 

Fig. 6  Graph visualising FNMR@FMR 1/10,000 values across different
base-n codes
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6 Comparative performance
This section focuses on assessing the performance with some of the
other prominent techniques that have used the AWE dataset.
Hansley et al. [71] and Emersic et al. [64] have evaluated several
holistic, handcrafted and learned features to tackle the problem of
unconstrained ear recognition. Some of feature extraction
techniques such as local binary patterns (LBP) [71], dense scale
invariant feature transform (DSIFT) [71], patterns of oriented edge
magnitudes (POEM) [64] and CNN [71] are illustrated in Fig. 7.
The results are evaluated on the AWE dataset. Fig. 7 also shows the
performance of the proposed methodology that achieves the best
EER of 12.52% on the AWE dataset. 

The joint CNN-SVM framework outperforms traditional
classifiers as it aims to exploit the strengths of CNN and SVM in a
single mechanism. As suggested by Lecun et al. [17], selecting
features on the basis of classifier performance turns out to be an
improved approach. A CNN is able to generate discriminative
feature vectors that dispense any explicit feature extraction
pipeline. CNNs perform better as compared to hand-crafted
features. Therefore, the proposed methodology outperforms feature
extraction techniques such as LBP, DSIFT and POEM.

In comparison to CNN proposed by Hansley et al. [71], the
proposed methodology uses a similar CNN architecture. However,
the proposed architecture differs in the following aspects. First, this
work uses CNN exclusively for feature extraction. A linear SVM is
used for classifying extracted BNF features from CNN. A CNN is
trained pivoting on the back-propagation algorithm that is based on
empirical risk minimisation. The training procedure stops as soon
as first the separating hyperplane is found irrespective of the nature
of minima (local or global). On the other hand, SVM aims to
minimise the generalisation errors using structural risk
minimisation. SVM solves a quadratic programming problem to
achieve a global optimum [72]. Therefore, SVM performs better as
compared to CNN for the classification task.

7 Conclusions
This paper presents a secure and cancellable ear biometric
authentication system. Integrating advantages of CNN (feature
extraction from images), SVM (ability to rank different classes)
and SHA-3 (non-invertible secure hash) paves the way for a secure
ear biometric system. The evaluations and experiments for the
proposed methodology demonstrate high EER of 12.52%
irrespective of the nature (base-n) and length of labels (m), where
nϵ(2, 9) and mϵ2(6, 11). To summarise, we have the following:

i. Outer ear image as a biometric is viable as experiments show a
high verification rate with average EER = 12.52% ± 1.5%

ii. The proposed method uses SHA-3 for storage of templates that
is non-invertible, and hence, there is no scope for an intrusion.

iii. The EER results show that the system is invariant to bit length
as well base-n for secure code. Hence, any enterprise can
choose the desired bit length for a tunable level of security.

iv. The proposed methodology is analysed to be competent against
FAR attacks, linkage attacks and hill climbing attacks.

8 References
[1] Cappelli, R., Maio, D., Lumini, A., et al.: ‘Fingerprint image reconstruction

from standard templates’, IEEE Trans. Pattern Anal. Mach. Intell., 2007, 29,
(9), pp. 1489–1503

[2] Pflug, A., Busch, C.: ‘Ear biometrics: a survey of detection, feature extraction
and recognition methods’, IET Biometrics, 2012, 1, (2), pp. 114–129

[3] Benarous, L., Kadri, B., Bouridane, A.: ‘A survey on cyber security evolution
and threats: biometric authentication solutions’, in Jiang, R., Al-maadeed, S.,
Bouridane, A., et al. (Eds.): ‘Biometric security and privacy’ (Springer,
Cham, Switzerland, 2017), pp. 371–411

[4] Boczek, M.: ‘Ear biometric capture, authentication, and identification method
and system’. US Patent 9,613,200, 4 April 2017

[5] Bargal, S.A., Welles, A., Chan, C.R., et al.: ‘Image-based ear biometric
smartphone app for patient identification in field settings’. VISAPP (3),
Berlin, Germany, 2015, pp. 171–179

[6] Iannarelli, A.V.: ‘Ear identification’ (Paramont Publishing Company,
Fremont, California, 1989)

[7] Burge, M., Burger, W.: ‘Ear biometrics in computer vision’. Proc. 15th Int.
Conf. Pattern Recognition, Barcelona, Spain, 2000, Art. no. 826830

[8] Moreno, B., Sanchez, A., Vélez, J.F.: ‘On the use of outer ear images for
personal identification in security applications’. Proc. IEEE 33rd Annual Int.
Carnahan Conf. Security Technology, Madrid, Spain, 1999, pp. 469–476

[9] Ghoualmi, L., Draa, A., Chikhi, S.: ‘An ear biometric system based on
artificial bees and the scale invariant feature transform’, Expert Syst. Appl.,
2016, 57, pp. 49–61

[10] Omara, I., Li, F., Zhang, H., et al.: ‘A novel geometric feature extraction
method for ear recognition’, Expert Syst. Appl., 2016, 65, pp. 127–135

[11] Anwar, A.S., Ghany, K.K.A., Elmahdy, H.: ‘Human ear recognition using
geometrical features extraction’, Procedia Comput. Sci., 2015, 65, pp. 529–
537

[12] Sana, A., Gupta, P., Purkait, R.: ‘Ear biometrics: a new approach’, in Pal, P.
(Ed.): ‘Advances in pattern recognition’ (World Scientific, India, 2007), pp.
46–50

[13] Wang, Y., Mu, Z.-C., Zeng, H.: ‘Block-based and multi-resolution methods
for ear recognition using wavelet transform and uniform local binary
patterns’. Proc. 19th Int. Conf. Pattern Recognition, Tampa, Florida, USA,
2008, pp. 1–4

[14] Jamil, N., AlMisreb, A., Halin, A.A.: ‘Illumination-invariant ear
authentication’, Proc. Comput. Sci., 2014, 42, pp. 271–278

[15] Meraoumia, A., Chitroub, S., Bouridane, A.: ‘An automated ear identification
system using Gabor filter responses’. Proc. IEEE 13th Int. New Circuits and
Systems Conf., Grenoble, France, 2015, pp. 1–4

[16] Hurley, D.J., Nixon, M.S., Carter, J.N.: ‘Force field feature extraction for ear
biometrics’, Comput. Vis. Image Underst., 2005, 98, (3), pp. 491–512

[17] LeCun, Y., Boser, B., Denker, J.S., et al.: ‘Backpropagation applied to
handwritten zip code recognition’, Neural Comput., 1989, 1, (4), pp. 541–551

[18] Jain, A.K., Nandakumar, K., Nagar, A.: ‘Biometric template security’,
EURASIP J. Adv. Signal Process., 2008, 2008, p. 113

[19] Rathgeb, C., Uhl, A.: ‘A survey on biometric cryptosystems and cancelable
biometrics’, EURASIP J. Inf. Secur., 2011, 2011, (1), p. 3

[20] Nagar, A., Nandakumar, K., Jain, A.K.: ‘A hybrid biometric cryptosystem for
securing fingerprint minutiae templates’, Pattern Recognit. Lett., 2010, 31,
(8), pp. 733–741

[21] Juels, A., Wattenberg, M.: ‘A fuzzy commitment scheme’. Proc. 6th ACM
Conf. Computer and Communications Security, Singapore, 1999, pp. 28–36

[22] Rathgeb, C., Uhl, A.: ‘Statistical attack against fuzzy commitment scheme’,
IET Biometrics, 2012, 1, (2), pp. 94–104

[23] Hao, F., Anderson, R., Daugman, J.: ‘Combining crypto with biometrics
effectively’, IEEE Trans. Comput., 2006, 55, (9), pp. 1081–1088

[24] Bringer, J., Chabanne, H., Cohen, G., et al.: ‘Theoretical and practical
boundaries of binary secure sketches’, IEEE Trans. Inf. Forensics Sec., 2008,
3, (4), pp. 673–683

[25] Tong, V.V.T., Sibert, H., Lecoeur, J., et al.: ‘Biometric fuzzy extractors made
practical: a proposal based on fingercodes’. Proc. Int. Conf. Biometrics,
Seoul, Korea, 2007, pp. 604–613

[26] Juels, A., Sudan, M.: ‘A fuzzy vault scheme’, Des. Codes Cryptogr., 2006, 38,
(2), pp. 237–257

[27] Charles Clancy, T., Kiyavash, N., Lin, D.J.: ‘Secure smartcard based
fingerprint authentication’. Proc. ACM SIGMM Workshop Biometrics
Methods and Applications, Berkeley, California, USA, 2003, pp. 45–52

[28] Uludag, U., Pankanti, S., Jain, A.K.: ‘Fuzzy vault for fingerprints’. Proc. Int.
Conf. Audio-and Video-Based Biometric Person Authentication, New York,
USA, 2005, pp. 310–319

[29] Nandakumar, K., Jain, A.K., Pankanti, S.: ‘Fingerprint-based fuzzy vault:
implementation and performance’. IEEE Trans. Inf. Forensics Sec., 2007, 2,
(4), pp. 744–757

[30] Tams, B.: ‘Unlinkable minutiae-based fuzzy vault for multiple fingerprints’,
IET Biometrics, 2016, 5, (3), pp. 170–180

[31] Dong, J., Tan, T.: ‘Security enhancement of biometrics, cryptography and data
hiding by their combinations’, 5th International Conference on Visual
Information Engineering (VIE 2008), Xian China, 2008, pp. 239–244

[32] Freire-Santos, M., Fierrez-Aguilar, J., Ortega-Garcia, J.: ‘Cryptographic key
generation using handwritten signature’, in Flynn, P.J., Pankanti, S. (Eds.):
‘Biometric technology for human identification III’, vol. 6202 (International
Society for Optics and Photonics, SPIE, USA, 2006), p. 62020N

Fig. 7  Comparative performance of the proposed methodology
 

IET Biom., 2019, Vol. 8 Iss. 4, pp. 259-266
© The Institution of Engineering and Technology 2019

265



[33] Lee, Y.J., Bae, K., Lee, S.J., et al.: ‘Biometric key binding: fuzzy vault based
on iris images’. Proc. Int. Conf. Biometrics, Seoul, Korea, 2007, pp. 800–808

[34] Chang, E.-C., Shen, R., Teo, F.W.: ‘Finding the original point set hidden
among chaff’. Proc. ACM Symp. Information, Computer and
Communications Security, Taipei, Taiwan, 2006, pp. 182–188

[35] Li, Q., Guo, M., Chang, E.-C.: ‘Fuzzy extractors for asymmetric biometric
representations’. Proc. IEEE Computer Society Conf. Computer Vision and
Pattern Recognition Workshops, Anchorage, Alaska, USA, 2008, pp. 1–6

[36] Ratha, N.K., Chikkerur, S., Connell, J.H., et al.: ‘Generating cancelable
fingerprint templates’, IEEE Trans. Pattern Anal. Mach. Intell., 2007, 29, (4),
pp. 561–572

[37] Leng, L., Zhang, S., Bi, X., et al.: ‘Two-dimensional cancelable biometric
scheme’. Proc. Int. Conf. Wavelet Analysis and Pattern Recognition, Xian,
China, 2012, pp. 164–169

[38] Pandey, R.K., Zhou, Y., Kota, B.U., et al.: ‘Deep secure encoding for face
template protection’. Proc. IEEE Conf. Computer Vision and Pattern
Recognition Workshops, Las Vegas, NV, USA, 2016, pp. 77–83

[39] Pandey, R.K., Zhou, Y., Kota, B.U., et al.: ‘Learning representations for
cryptographic hash based face template protection’, in Bhanu, B., Kumar, A.
(Eds.): ‘Deep learning for biometrics’ (Springer, Cham, Switzerland, 2017),
pp. 259–285

[40] Meraoumia, A., Kadri, F., Bendjenna, H., et al.: ‘Improving biometric
identification performance using PCANet deep learning and multispectral
palmprint’, in Jiang, R., Al-maadeed, S., Bouridane, A., et al. (Eds.):
‘Biometric security and privacy’ (Springer, Cham, Switzerland, 2017), pp.
51–69

[41] Paul, P.P., Gavrilova, M.: ‘Multimodal biometric approach for cancelable face
template generation’, in Braun, J.J. (Ed.): ‘Multisensor, multisource
information fusion: architectures, algorithms, and applications’ vol. 8407,
(International Society for Optics and Photonics, SPIE, USA, 2012), p.
84070H

[42] Dworkin, M.J.: ‘SHA-3 standard: permutation-based hash and extendable-
output functions’. Technical report, 2015

[43] Donahue, J., Jia, Y., Vinyals, O., et al.: ‘DECAF: A deep convolutional
activation feature for generic visual recognition’. Proc. Int. Conf. Machine
Learning, Beijing, China, 2014, pp. 647–655

[44] Oquab, M., Bottou, L., Laptev, I., et al.: ‘Learning and transferring mid-level
image representations using convolutional neural networks’. Proc. IEEE
Conf. Computer Vision and Pattern Recognition, Columbus, Ohio, USA,
2014, pp. 1717–1724

[45] Razavian, A.S., Azizpour, H., Sullivan, J., et al.: ‘CNN features off-the-shelf:
an astounding baseline for recognition’. Proc. IEEE Conf. Computer Vision
and Pattern Recognition Workshops, Columbus, Ohio, USA, 2014, pp. 806–
813

[46] Krizhevsky, A., Sutskever, I., Hinton, G.E.: ‘ImageNet classification with
deep convolutional neural networks’. Proc. Advances in Neural Information
Processing Systems, Lake Tahoe, Nevada, USA, 2012, pp. 1097–1105

[47] Liu, S., Deng, W.: ‘Very deep convolutional neural network based image
classification using small training sample size’, 3rd IAPR Asian Conference
on Pattern Recognition (ACPR), Kuala Lumpur, 2015, pp. 730–734

[48] Russakovsky, O., Deng, J., Su, H., et al.: ‘ImageNet large scale visual
recognition challenge’, Int. J. Comput. Vis., 2015, 115, (3), pp. 211–252

[49] Kingma, D., Ba, J.: ‘Adam: a method for stochastic optimization’, 3rd
International Conference on Learning Representations (ICLR 2015),
California, 2015

[50] Duchi, J., Hazan, E., Singer, Y.: ‘Adaptive subgradient methods for online
learning and stochastic optimization’, J. Mach. Learn. Res., 2011, 12, pp.
2121–2159

[51] Tieleman, T., Hinton, G.: ‘Lecture 6.5-rmsprop: divide the gradient by a
running average of its recent magnitude’, in ‘COURSERA: neural networks

for machine learning’ (2012), www.cs.toronto.edu/~tijmen/csc321/slides/
lecture_slides_lec6.pdf

[52] Hochreiter, S., Schmidhuber, J.: ‘Flat minima’, Neural Comput., 1997, 9, (1),
pp. 1–42

[53] Heusel, M., Ramsauer, H., Unterthiner, T., et al.: ‘GANs trained by a two
time-scale update rule converge to a local Nash equilibrium’. Proc. Advances
in Neural Information Processing Systems, Long Beach, California, USA,
2017, pp. 6629–6640

[54] Srivastava, N., Hinton, G.E., Krizhevsky, A., et al.: ‘Dropout: a simple way to
prevent neural networks from overfitting’, J. Mach. Learn. Res., 2014, 15, (1),
pp. 1929–1958

[55] Ioffe, S., Szegedy, C.: ‘Batch normalization: accelerating deep network
training by reducing internal covariate shift’, Proceedings of the 32nd
International Conference on Machine Learning PMLR, 2015, pp. 448–456

[56] Menon, A.K.: ‘Large-scale support vector machines: algorithms and theory’,
vol. 117 (Research Exam, University of California, San Diego, 2009)

[57] Fan, R.-E., Chang, K.-W., Hsieh, C.-J., et al.: ‘LIBLINEAR: a library for
large linear classification’, J. Mach. Learn. Res., 2008, 9, pp. 1871–1874

[58] Halko, N., Martinsson, P.-G., Tropp, J.A.: ‘Finding structure with
randomness: probabilistic algorithms for constructing approximate matrix
decompositions’, SIAM Rev., 2011, 53, (2), pp. 217–288

[59] Sotirov, A., Stevens, M., Appelbaum, J., et al.: ‘Md5 considered harmful
today, creating a rogue CA certificate’. Proc. 25th Annual Chaos
Communication Congress, no. EPFL-CONF-164547, Berlin, Germany, 2008

[60] Schneier, B.: ‘Schneier on security: cryptanalysis of SHA-1’, 2005,
Schneier.com

[61] Merkle, R.C.: ‘Secrecy, authentication, and public key systems’. Ph.D.
Dissertation, Stanford University, Stanford, CA, USA, AAI8001972, 1979

[62] Secure Hash Standard, Federal information processing standards publication
180-1, 1995

[63] Bertoni, G., Daemen, J., Peeters, M., et al.: ‘Sponge functions’. Proc.
ECRYPT Hash Workshop, Barcelona, Spain, vol. 2007, 2007

[64] Emersic, Z., Struc, V., Peer, P.: ‘Ear recognition: more than a survey’,
Neurocomputing, 2017, 255, pp. 26–39

[65] University of Science and Technology, Beijing, USTB database. http://
www1.ustb.edu.cn/resb/en/index.htm, 2004

[66] Sinha, H., Manekar, R., Sinha, Y., et al.: ‘Convolutional neural network-based
human identification using outer ear images’, in Bansal, J., Das, K., Nagar,
A., et al. (Eds.): ‘Soft computing for problem solving’ (Springer, Singapore,
2019), pp. 707–719

[67] Blum, A., Rivest, R.L.: ‘Training a 3-node neural network is NP complete’.
Proc. Advances in Neural Information Processing Systems, Denver, Colorado,
USA, 1989, pp. 494–501

[68] He, K., Sun, J.: ‘Convolutional neural networks at constrained time cost’.
Proc. IEEE Conf. Computer Vision and Pattern Recognition, Boston,
Massachusetts, USA, 2015, pp. 5353–5360

[69] Livni, R., Shalev-Shwartz, S., Shamir, O.: ‘On the computational efficiency of
training neural networks’. Proc. Advances in Neural Information Processing
Systems, Montreal, Quebec, Canada, 2014, pp. 855–863

[70] UK Biometrics Working Group: ‘Use of biometrics for identification and
authentication: advice on product selection’, Tech. report, UK, Government
Office of the e-Envoy, 2002, www.cesg.gov.uk/Publications/Documents/
biometricsadvice.pdf

[71] Hansley, E.E., Segundo, M.P., Sarkar, S.: ‘Employing fusion of learned and
handcrafted features for unconstrained ear recognition’, IET Biometrics, 2018,
7, (3), pp. 215–223

[72] Niu, X.-X., Suen, C.Y.: ‘A novel hybrid CNN–SVM classifier for recognizing
handwritten digits’, Pattern Recognit., 2012, 45, (4), pp. 1318–1325

266 IET Biom., 2019, Vol. 8 Iss. 4, pp. 259-266
© The Institution of Engineering and Technology 2019


